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Introduction

At the present time, myoelectric prostheses perform only one function of the hand: open

and close with the thumb, index and middle finger coming together to grasp various shaped

objects. To better understand the limitations of the current single-function prostheses and the

needs of the individuals who use them, The Institute for Rehabilitation and Research (TIRR),

sponsored by the National Institutes of Health (August 1992 -November 1994), surveyed

approximately 2500 individuals with upper limb loss. When asked to identify, specific features

of their current electric prosthesis that needed improvement, the survey respondents

overwhelmingly identified the lack of wrist and finger movement as well as poor control

capability.

Simply building a mechanism with individual finger and wrist motion is not enough.

Individuals with upper limb loss tend to reiect prostheses that require continuous visual

monitoring and concentration to control. Robotics researchers at NASA's Johnson Space Center

(JSC) and Rice University have made substantial progress in myoelectric teleoperation [ 1-5]. A

myoelectric teleoperation system translates signals generated by an able-bodied robot operator's

muscles during hand motions into commands that drive a robot's hand through identical motions.

Farry's early work in myoelectric teleoperation used variations over time in the myoelectric

spectrum as inputs to neural networks to discriminate grasp types and thumb motions. The

resulting schemes yielded up to 93% correct classification on thumb motions [ 1,2]. More

recently, Fernandez achieved 100% correct non-realtime classification of thumb abduction,

extension, and flexion on the same myoelectric data. Fernandez used genetic programming to

develop functions that discriminate between thumb motions using myoelectric signal parameters

[3,4]. Genetic programming (GP) is an evolutionary programming method where the computer

can modify the discriminating functions' form to improve its performance, not just adjust

numerical coefficients or weights [4,6]. Although the function development may require much

computational time and many training cases, the resulting discrimination functions can run in

realtime on modest computers. These results suggest that myoelectric signals might be a feasible

teleoperation medium, allowing an operator to use his or her own hand and arm as a master to

intuitively control an anthropomorphic robot in a remote location such as outer space.

These early results suggest that multifunction myoelectric control based on genetic

programming is viable for prosthetics, given that teleoperation of a robot by an operator with a

complete limb is a limiting or "best-case" scenario for myoelectric control. We hypothesize that

myoelectric signals of traumatic below-elbow amputees can control several movements of a

myoelectric hand with the help of a function or functions developed with genetic programming

techniques. We currently are testing this hypothesis with the help of NASA/JSC under an

NASA/JSC-Texas Medical Center Cooperative Grant. In this study, five adult below-elbow

amputees are performing two forearm motions, two wrist motions, and two grasp motions using

their "phantom" limb and sound limb while we collect myoelectric data from four sites on the

residual limb and four sites from the sound limb. We will use a variety of myoelectric signal

time and frequency features in a genetic programming analysis to evolve functions that

discriminate between signals generated during different muscle contractions.



Background and Theory

Farry focused on the time-varying spectrum of the myoelectric signal by studying the

correlation between the myoelectric spectrum in the initial recruiting phase of a motion and the

type of motion [5]. Her work examined the myoelectric signals for thumb flexion, extension and

abduction by placing an electrode over the Flexor Pollicis Longus/Flexor Digitorum Superficialis

pair in a monopolar electrode configuration. In addition to myoelectric signal collection, Farry

simultaneously recorded the motion of the thumb using an exoskeletal joint position

measurement device as the subject performed one of the three thumb motions, a key grasp, or

chuck grasp. Use of this device allowed Farry to determine the starting time of the actual

motion, independent of the myoelectric signal, permitting a direct comparison among many test

trials.

Farry demonstrated intuitive myoelectric discrimination between chuck and key grasps

with a success rate of over 90% using a new spectral estimation approach: Thompson's multiple

window method. This estimate has much lower bias and variance than traditional estimates,

making it a better candidate to compute motion classification features. She also extended this

method into a time-frequency analysis tool called the short-time Thompson transform, showing

that the myoelectric signal may be more stationary than previously thought.

Fernandez extended Farry's line of work by using genetic programming to analyze the

myoelectric data collected by Fatty. Genetic programming uses an evolutionary approach to

problem solving by providing a way to search all possible programs composed of certain

terminals and functions to find a computer program of unspecified size and shape which solves,

or approximately solves, the problem. First, an initial, random population of programs

composed of terminals and functions is created. Each program is then run and the result is

assigned a fitness value according to how well it solves the problem. Next, a new population of

programs is created from a predetermined reproduction technique based on the fitness of the

results from the previous generation. The solution to the problem is the genetic program with the

best fitness within all of the generations.

In the current study, we continue to use the genetic programming methods of Fernandez,

which followed the feature extraction method from Hudgins [7] and Saridis [8]. Hudgins

developed a simple approach for the classification of four different motions or muscle
contractions. His classification scheme used five different features from several windows or

time segments of each of the signals. His five features were: Mean Absolute Value; Mean

Absolute Value Slope, Zero Crossings; Slope Sign Changes and Waveform Length. He used a

multi-layer perception with back-propagation to classify myoelectric patterns from these

features.

Fernandez used more features than Hudgins as well as genetic programming instead of

neural networks for classification. The first task of the genetic programming implementation

was the selection of the terminals for the genetic program. Fernandez began with Hudgins'

features and defined five additional features to compose the terminal set. These additional

features are: Average value; Up slope (UP), which counts the number of individual samples that

have a positive slope; Down slope (DOWN), a count of the number of individual samples which

had a negative slope; the ratio of mean absolute value (MAX/) of channel 1 to channel 2; and the

ratio of the MA V of channel 2 to channel 1. It is important to point out that the last two

compound features (combinations of other features) gave moderately good results in the

differentiation of the signals. In some of the solutions the genetic program used the first ratio,

where as others it used the second one, even though one is the reciprocal of the other.



Fernandez'terminalsetfor thegeneticprogramincludedseveralconstantsaswell asthe
abovefeatures.Thisgavethegeneticprogramtheability to manipulatethedatawith some
consistency.Themajorityof theconstantswerea seriesof numberswhichstartedat 0.7and
changedby anincrementof 0.1upto 1.3(i.e., 0.7,0.8,0.9, 1.0,1.1,1.2,1.3).

Thenexttaskwasdefiningthefunction setfor geneticprogram,consistingof
mathematicalfunctionsselectedfor their diverseproperties.For example,Fernandezincluded
trigonometricfunctionsbecausethewaveformshavesinusoidcomponentfeatures.

Thefitnessfunctionis themostimportantconstituentof thegeneticprogramming
method.Thefitnessfunctionmustalwaysyield a valuein thesamesmallrangefor thesame
typeof myoelectricsignalandavaluein a differentrangefor anothertypeof myoelectricsignal.
Thevaluerangescorrespondingto differentclassesof myoelectricsignalsmustnotoverlap,i.e.,
theminimumof therangeof onesignalmustbegreaterthanthemaximumof therangeof
anothersignal.

Giventhethumbmotiondatacollectedby Farry,Fernandezwasableto achieve100%
discriminationof extension,flexion, andabductionof thethumbwith a singlediscrimination
function. Fernandezalsoachievedperfectdiscriminationof thesethumbmotionsusingslightly
different strategiessuchascombinationsof pair-wisediscriminationfunctions.Consequently,
wearebeginningwith Fernandez'geneticprogrammingapproachin thecurrentstudywith
amputeedata.

Methods

Subjects
We have recruited five adult subjects with an unilateral below-elbow amputation for this

study. Their average age is 34 years (range 23-50). There are three males and two females.

Trauma was the cause of amputation in all five cases. On average, subjects have had the

amputation for 7.6 years (range 3-17). One subject currently uses a myoelectric prosthesis

exclusively where as two subjects use both a myoelectric and a body-powered prosthesis. Of the

remaining subjects, one is a former myoelectric user now using only a body-powered prosthesis;

the other has no myoelectric experience. All subjects report the clear perception of a "phantom"

hand.

Equipment

Myoelectric data are collected using a Fetrode electrode artifact reduction system (UFI,

Morro Bay, California) consisting of disposable recessed silver-silver chloride electrodes, an

amplifier and a signal conditioner. The Fetrode system has a very high input impedance that

virtually eliminates induced motion artifact. The recessed, wet electrodes have low motion

artifacts relative to those commonly used in prostheses; however, we want to initially test genetic

programming on myoelectric signals rather than motion artifact.

The myoelectric signals are routed from the Fetrodes through a BNC breakout board

(National Instruments Corp., Austin, Texas) to an AT-MIO-16X data acquisition board (National

Instruments Corp., Austin, Texas) located in a 133MHz Pentium personal computer (Gateway

2000, North Sioux City, South Dakota). Data collection is controlled using software written

within the LabVIEW program development application (National Instruments Corp., Austin,

Texas). We use MATLAB (MathWorks, Natick, Massachusetts) for preprocessing and feature



computation,andFernandez'andGraham'scustomsoftware[4] for thegeneticprogramming
implementation.

Procedure

The data collection from amputee subjects occurs at TIRK Four pairs of surface

electrodes are placed on the residual limb and four are placed at nearly identical sites on the

sound limb using a monopolar configuration. Electrode site choices initially are based on

muscles most likely to be active during the motions. Good muscle sites tend to be four of the

following: (1) Brachioradialis, extensor carpi radialis brevis and longus; (2) Flexor carpi

radialis, flexor carpi ulnaris; (3) Extensor digitorum complex, extensor digti minimi; (4) Biceps

brachii; (5) Pronator teres; and (6) Flexor digitorum superficialis. The sites are modified

somewhat for each individual based on an assessment of where the most useful myoelectric

signal is likely to be present given that person's residual limb anatomy and some testing with a

myotester. We place ground electrodes for each myoelectric channel on bony areas of the

corresponding limb and the collarbone.

Data collection begins with the subject seated and their arm/hand in a neutral position.

The subject is presented with a randomly computer selected image on a computer monitor

showing one of the six intended final hand/arm positions: (1) open grasp, (2) close grasp, (3)

wrist flexion, (4) wrist extension, (5) forearm pronation, and (6) forearm supination. The subject

has been instructed to move both their sound limb and their "phantom" limb simultaneously to

the given position using only the desired motion while not moving uninvolved joints. Data

collection begins at the moment the picture first appears and continues for two seconds at a rate

of 2400 Hz. The subject then is allowed a brief rest before the next motion is initiated (at their

command). If the subject indicates that he or she possibly have made a mistake during a trial,

then that trial is discarded. Otherwise, the trial is added to our database, regardless of the

opinions of the attending researchers. Our goal is to collect at least 100 trials for each of the six

motions, for a total data set of 600 trials per subject. Our previous experience with genetic

programming and neural networks indicates that we need a large number of trials, which are

randomly split between "training" or evolution, and testing.

Once we have a complete data set, we use Farry's rate of change of energy [1] algorithm

on the myoelectric signatures to locate the motion start (sound limb) or motion command start

(residual limb). This algorithm proved more accurate than several others in locating motion start

where there was a motion-measuring exoskeleton to compare their performance. In this study,

we are not using an exoskeleton (even on the subjects' sound limb), because it will not be an

option in clinical prosthetics fittings, which will focus entirely on the subjects' residual limbs.

Locating motion start and aligning all of the myoelectric signatures relative to motion start

makes all subsequent data manipulation easier.

Next, we compute features for input to the genetic programming evolution and testing

process. We are using a combination of features from Hudgins [7], Fa_. [2], and Fernandez [3]

as inputs to the genetic programming evolution. We use approximately 35% of the trials in the

evolution process and reserve the remainder for the final step, testing the resulting discrimination
functions.

Results

TIRR has a completed advanced myoelectric data collection system. We have tested the

entire data path (from data collection through genetic programming features) with data from a



research team member. We have collected data from two amputee subjects. We are not able to

use Farry's rate of change of energy_ algorithm on the myoeleetric signatures of the first subject

due to the muscle tension before the motion start. Farry will either adjust her algorithm or we

will have the genetic programming determine the motion start (which is a goal for Round II).

We collected 750 trials from the first subject. The second subject's myoelectric signatures could

be used for Farry's rate of change of energy algorithm The genetic programming fitness

function is presently being determined. We believed it was important to have one amputee

subject's data solution to determine if any changes need to be made with future data collection.

Conclusions and Future Work

Farry's myoelectric teleoperation research began in 1991 with a search for an alternative

to the fatiguing, non-intuitive three and four degree of freedom joysticks and bulky exoskeletons

then commonly used for teleoperation of robot arms and hands [9]. Although improvements and

cost reductions in exoskeleton and other limb tracking devices have reduced the potential payoff

ofa myoelectric teleoperation system, we continue to explore this limiting ease for myoelectric

control. Consequently, we are collecting sound side data on the commanded motions

simultaneous with the residual limb data. Myoelectric control remains a prime option for

prosthetics control, however, and has become the main focus of our research in the NASA/JSC -

TIRR partnership. Our goal in the application of genetic programming to prosthesis control is

multifunction myoelectric control that tailors itself to the individual prosthesis user.

Accomplishment of this goal should result in reliable multifunction performance that does not

require the user's continual attention.

The current study is a feasibility cheek of genetic programming to prosthetics control.

We are focusing on identifying the particular motion, not determining its speed or magnitude.

We also are not yet concerned with simultaneous combinations of motions. If genetic

programming continues to show promise after these initial trials, we will explore speed,

magnitude, and combinations of motions. We also will pursue genetic programming extensions

that allow the discrimination functions to continue evolving based on realtime performance. For

example, after the initial training or evolution process, the user could "discipline" the prosthesis

when it makes a mistake in interpreting the user's myoelectric signals. The prosthesis controller
can the use that error feedback to refine its discrimination functions.

Beyond the genetic programming effort, however, we plan to make the data sets collected

in this study available to other researchers via the World Wide Web. Lack of access to subjects

and appropriate myoelectrie measurement equipment has kept many researchers from applying

innovative control algorithms on myoelectric prosthesis control. In addition to lowering the cost

of entry into myoelectric research for others, we hope to gain insight into the performance of our

approach versus that of other approaches.
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